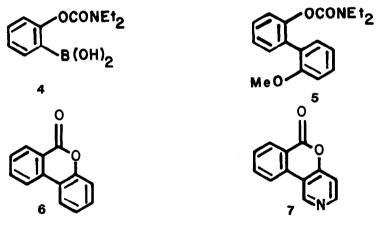

SYNTHETIC CONNECTIONS TO THE AROMATIC DIRECTED METALATION REACTION. UNSYMMETRICAL BIARYLS BY PALLADIUM-CATALYZED CROSS COUPLING OF DIRECTED METALATION-DERIVED ARYLBORONIC ACIDS WITH ARYL HALIDES

M.J. Sharp and V. Snieckus*

Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Waterloo, Canada N2L 3G1

Abstract: The arylboronic acids 2 and 4 derived by directed ortho metalation of benzamides and carbamates, undergo an efficient palladium-catalyzed cross coupling reaction with a variety of aryl halides to yield unsymmetrical biaryls and heterobiaryls (Table).


The Ni- and Pd-catalyzed cross coupling reaction of organometallic reagents with organic halides is rapidly becoming an important synthetic methodology for regio- and stereo-selective carbon-carbon formation.¹ Its versatility is underscored by a) the potential of using electronegative metal-based organometallics, (e.g. Zn, Al, Zr) b) coupling with a broad range of alkyl, alkenyl, alkynyl, benzyl, and aryl halides² and c) compatibility of organic halides with reactive functional groups (CO_2R , $CONR_2$, CN, NO_2) with the electronegative metal-derived organometallics. For the synthesis of unsymmetrical biaryls and hetero biaryls, the cross coupling tactic has involved the use of ArMgX,³ HetArMgX,⁴ ArZnX,⁵ HetArZnX,⁴ and ArB(OH)₂⁶ intermediates. Herein we report on the efficient cross coupling reaction of arylboronic acids **2**, derived from **1** by directed ortho metalation, with aryl, heteroaryl, and benzyl bromides to yield unsymmetrical biaryls **3**. In view of the broad scope and diverse synthetic utility of the directed metalation reaction,⁷ its connection to the transition metal-catalyzed cross coupling reaction will significantly broaden the horizons for unsymmetrical biaryl construction.⁸

5997

The crystalline carboxamido phenylboronic acid **2** was prepared in 80% overall yield by sequential standard metalation (<u>s</u>-BuLi/TMEDA/THF/-78°C) and treatment with B(OMe)₃,⁹ followed by acidic workup (5% aq HCl).^{6b} When **2** was subjected to the excellent cross coupling procedure of Suzuki (3 mmol % of Pd(PPh₃)₄/2M aq Na₂CO₃/Toluene/reflux/6 - 12 h)^{6a} in the presence of bromobenzene (limiting reagent), the biphenyl carboxamide (entry 1, Table) was obtained in high yield.¹⁰ No evidence for homo coupling was observed (< 2%).

Results of representative cross coupling reactions are depicted in the **Table.** Steric hindrance appears not to be a major impediment to high yields (entry 2) unless the <u>o</u>-functionality is an exceedingly bulky and electron-withdrawing group in the bromo aromatic component (entry 4). In these cases, longer reflux times (12-20 h) were used. Hetero cross coupling occurs smoothly with bromo-thiophene, -pyridine, and -thiazole systems (entries 5, 6, 9). Although benzyl bromide provided the expected product in excellent yield (entry 8), attempts to couple **2** with allyl, crotyl, and vinyl bromides have been unsuccessful to date.

The cross coupling methodology may be extended to other directed metalation-derived aryl boronic acids. The <u>o</u>-carbamoyloxy phenyl boronic acid **4**, obtained as described for **2** by directed metalation¹¹ and $B(OMe)_3$ treatment of N,N-diethyl O-phenyl carbamate, was coupled with <u>o</u>-bromo anisole to afford the unsymmetrical biphenyl carbamate **5** in 40% yield.

As an indication of further scope of the cross coupling procedure for heterocyclic

Entry	Aryl Bromide	Product ^a	Yield, % ^b	Mp(bp)°C
1	Br	CON(i-Pr)2	82	106-108) (hexane)
2	Br MeO	CON(i-Pr)2	85	95-9 8 (hexane)
3	Br OMe	CON(i-Pr)2	95 Me	188–189 (hex-Et ₂ 0)
4	Et2NOC	Et ₂ NOC	44	175-178 (hex-Et ₂ 0)
5	Br — Ls	CON(i-Pr) ₂	92	102-103 (hex-Et ₂ 0)
6		CON(i-Pr)2	90	86-87 (hex-Et ₂ 0)
7		Et ₂ NOCO	c 80	oil
8	Br	CON(i- Pr)2	83	120-125/ 0.2 mm)
9		CON(i- Pr)2	87	111-113 (hexane)

^a All products showed analytical and spectral (IR, NMR, MS) data consistent with the proposed structures. ^b Yields correspond to chromatographically pure materials. ^c Obtained by metalation (s-Buli/TMEDA/THF/-78°C) and treatment with BrCH₂CH₂Br of N,N-diethyl 4-pyridyl O-carbamate, Miah, M.A.J.; Snieckus, V. submitted for publication.

synthesis, the product of entry 2 was converted (1. BBr3/CHpC12/-78°C+RT; 2.

HOAc/reflux/l2h) into 3,4-benzocoumarin (6) 12 in 89% yield. Similarly the product of entry 7 was transformed (2M HCl/reflux/6 h) into the analogous pyridocoumarin 7 in 92% yield.

These preliminary studies demonstrate that connecting the directed metalation strategy7 to the transition metal-catalyzed cross coupling reaction of arylboronic $acids^{6a}$ leads to the production of unsymmetrical biaryls and heterobiaryls which are difficult to obtain by classical procedures.⁸ The increasing interest in biaryls, especially as chiral catalysts, 13 provides the impetus for the generalization and expansion of this strategy in our laboratories.¹⁴

References and Footnotes

- Tamao, K.; Kumada, M. In "Organometallic Reactions and Syntheses"; Becker, E.I.; Tsutsui, 1. M. Eds.; Plenum: New York, in press; Negishi, E. In "Current Trends in Organic Synthesis"; Nozaki, H. Ed.; Pergamon: New York, **1983**, p. 269; Hayashi, T.; Kumada, M. <u>Acct. Chem. Res. **1982**</u>, <u>15</u>, 395; Negishi, E. <u>ibid</u>. **1982**, <u>15</u>, 340. The cross coupling chemistry has been extended to include OR, SR, SeR, OP(0)OR₂
- 2. functions, see Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am: Chem. Soc., 1984, 106, 158 and Tiecco, M.; Testaferri, L.; Tingoli, M.; Wenkert, E. <u>Tetrahedron</u>, 1983, 39, 2289 and refs. cited therein. a) Corriu, R.J.P.; Masse, J.P. J.C.S. Chem. Comm. 1972, 144; b) Tamao, K.; Minato, A.;
- 3. a) corrid, R.C.P.; Masse, G.P. <u>J.C.S. chem. comm.</u> 1972, 144; D) Tamao, K.; Minato, A.; Miyake, N.; Matsuda, T.; Kiso, Y.; Kumada, M. <u>Chem. Lett.</u> 1975, 133; c) Sekiya, A.; Ishikawa, N. <u>J. Organometal. Chem.</u> 1976, <u>118</u>, <u>349</u>; d) Clough, R.C.; Mison, P.; Roberts, J.D. <u>J. Org. Chem.</u> 1976, <u>41</u>, 2252; e) Ibuki, E.; Ozasa, S.; Fujioka, Y.; Yanagihara, Y.; <u>Chem. Pharm. Bull. Jpn.</u> 1982, <u>30</u>, 802. Minato, A.; Suzuki, K.; Tamao, K.; Kumada, M. <u>J.C.S. Chem. Comm.</u> 1984, 511 and refs. cited
- 4. therein.
- 5.
- Inderein.
 Negishi, E.; King, A.O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.
 a) Miyaura, N.; Yanagi, T.; Suzuki, A. Syn. Commun. 1981, 11, 513; b) Thompson, W.J.; Gaudino, J. J. Org. Chem. 1984, 49, 5237.
 a) Sibi, M.P.; Chattopadhyay, S.; Dankwardt, J.W.; Snieckus, V. J. Am. Chem. Soc.in press. b) Beak, P.; Snieckus, V. in press. Acct. Chem. Res. 1982, 15, 306.
 For a discussion of previous biaryl synthesis, see refs. 3b and 3d. See also Tius, M.A. Totabadaan Latt. 1981, 3335; Taylor, E.C.; Kienzle, E.; McKillon, A. J. Am. Chem. 6.
- 7.
- 8. Tetrahedron Lett. 1981, 3335; Taylor, E.C.; Kienzle, F.; McKillop, A. J. Am. Chem. Soc. 1970, 92, 6088.
- Iwao, M.; Mahalanabis, K.K.; Watanabe, M.; de Silva, S.O.; Snieckus, V. Tetrahedron. 9. 1983, 39, 1955.
- A Grignard-based cross coupling (see Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; 10. Kumada, M. Tetrahedron Lett. 1981, 5319) on N,N-diisopropyl benzamide (1. t-BuLi/THF/0°C, 2. MgBr₂/0°C+RT; 3. PhI/3 mol % PdCl₂(PPh₃)₂/Et₂0/RT or reflux) afforded the biphenyl carboxamide of entry 1 in only 20 - 30% yield.
- 11.
- 12.
- Sibi, M.P.; Snieckus, V. J. Org. Chem. **1983**, <u>48</u>, 1935. Mp 88-89°C; lit mp 87-91.5°C. See Rule, H.G.; Bretscher, E.J. <u>J. Chem. Soc.</u> **1927**, 925. Meyers, A.I.; Lutomski, K.A. <u>J. Am. Chem. Soc.</u> **1982**, <u>104</u>, 879; Wilson, J.M.; Cram, D.J. <u>J. Org. Chem.</u> **1984**, <u>49</u>, 4930. 13.
- We are grateful to NSERC Canada and Imperial Oil Canada for financial support. 14.

(Received in USA 19 August 1985)